skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Momeni, Mohammad R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-dimensional layered hybrid organic–inorganic bronze (HOIB) materials are a new class of mixed-valence hybrid metal-oxides that demonstrate great potential as advanced functional materials for next-generation electronics. Recently, new hybrid vanadium bronze materials, (EV)V8O20 and (MV)V8O20, EV = ethyl viologen and MV = methyl viologen, have been introduced, with EV having ≈3 orders of magnitude higher electrical conductivity than the MV system. Given their stoichiometrically similar inorganic V–O layers and close reduction potentials, the observed significant difference in electrical conductivities is puzzling. Here, through accurate first-principles electronic structure calculations coupled with MACE machine learning molecular dynamics (MD) simulations validated by accurate ab initio MD data, we provide mechanistic molecular-level insights into dominant charge transport and electrical conductivity pathways in these materials. Our detailed structural and electronic properties data identify factors contributing to this significant difference in the electrical conductivity of these materials. Our findings in this work offer clues and provide valuable insights into improving the electrical conductivity of hybrid bronze and similar materials, suggesting new ways to guide the design of next-generation materials with enhanced properties for electronic and energy conversion applications. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  2. DL_POLY Quantum 2.1 is introduced here as a highly modular, sustainable, and scalable general-purpose molecular dynamics (MD) simulation software for large-scale long-time MD simulations of condensed phase and interfacial systems with the essential nuclear quantum effects (NQEs) included. The new release improves upon version 2.0 through the introduction of several emerging real-time path integral (PI) methods, including fast centroid molecular dynamics (f-CMD) and fast quasi-CMD (f-QCMD) methods, as well as our recently introduced hybrid CMD (h-CMD) method for the accurate and efficient simulation of vibrational infrared spectra. Several test cases, including liquid bulk water at 300 K and ice Ih at 150 K, are used to showcase the performance of different implemented PI methods in simulating the infrared spectra at both ambient conditions and low temperatures where NQEs become more apparent. Additionally, using different salt-in-water (i.e., dilute) and water-in-salt (i.e., concentrated) lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) aqueous electrolyte solutions, we demonstrate the applicability of our recently introduced h-CMD method implemented in DL_POLY Quantum 2.1 for the large scale simulation of infrared (IR) spectra of complex heterogeneous systems. We show that h-CMD can overcome the curvature problem of CMD and the artificial broadening of T-RPMD for the accurate simulation of the vibrational spectra of complex, heterogeneous systems with NQEs included. 
    more » « less
    Free, publicly-accessible full text available May 8, 2026
  3. Steed, Jonathan W (Ed.)
    Free, publicly-accessible full text available November 6, 2025
  4. DL_POLY Quantum 2.0, a vastly expanded software based on DL_POLY Classic 1.10, is a highly parallelized computational suite written in FORTRAN77 with a modular structure for incorporating nuclear quantum effects into large-scale/long-time molecular dynamics simulations. This is achieved by presenting users with a wide selection of state-of-the-art dynamics methods that utilize the isomorphism between a classical ring polymer and Feynman’s path integral formalism of quantum mechanics. The flexible and user-friendly input/output handling system allows the control of methodology, integration schemes, and thermostatting. DL_POLY Quantum is equipped with a module specifically assigned for calculating correlation functions and printing out the values for sought-after quantities, such as dipole moments and center-of-mass velocities, with packaged tools for calculating infrared absorption spectra and diffusion coefficients. 
    more » « less
  5. Most of the chemistry in nanoporous materials with small pore sizes and windows takes place on the outer surface, which is in direct contact with the substrate/solvent, rather than within the pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics (MD) simulations to decipher the interaction of water with a realistic finite ∼5.1 nm nanoparticle (NP) model of ZIF-8, with edges containing undercoordinated Zn metal sites, vs a conventionally employed pristine crystalline bulk (CB) model. The hydrophobic interior surface of the CB model imparts significant dynamical behavior on water molecules with (i) increasing diffusivity from the surface toward the center of the pores and (ii) confined water, at low concentration, showing similar diffusivity to that of the bulk water. On the other hand, water molecules adsorbed on the surface of the NP model exhibit a range of characteristics, including “coordinated”, “confined”, and “bulk-like” behavior. Some of the water molecules form coordinative bonds with the undercoordinated Zn metal centers and act as nucleation sites for the water droplets to form, facilitating diffusion into the pores. However, diffusion of water molecules is limited to the areas near the surface and not all the way to the core of the NP model. Our atomistic MD simulations provide insights into the stability of ZIFs in aqueous solutions despite hydrolysis of their outer surface. Such insights are helpful in designing more robust nanoporous materials for applications in humid environments. 
    more » « less
  6. Herein, a series of halogenated UiO-66 derivatives was synthesized and analyzed for the breakdown of the chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate (DMNP) to analyze ligand effects. UiO-66-I degrades DMNP at a rate four times faster than the most active previously reported MOFs. MOF defects were quantified and ruled out as a cause for increased activity. Theoretical calculations suggest the enhanced activity of UiO-66-I originates from halogen bonding of the iodine atom to the phosphoester linkage allowing for more rapid hydrolysis of the P–O bond. 
    more » « less